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Abstract 
 

Requirements traceability (RT) aims at defining relation-
ships between stakeholder requirements and artifacts 
produced during the software development life-cycle. Al-
though techniques for generating and validating RT are 
available, RT in practice often suffers from the enormous 
effort and complexity of creating and maintaining traces 
or from incomplete trace information that cannot assist 
engineers in real-world problems. In this paper we will 
present a tool-supported technique easing trace acquisi-
tion by generating trace information automatically. We 
will explain the approach using a video-on-demand sys-
tem and show that the generated traces can be used in 
various engineering scenarios to solve RT-related prob-
lems. 

1 Introduction  

Requirements traceability (RT) is an approach defined 
as the “ability to describe and follow the life of a re-
quirement, in both a forward and backward direction” [8] 
by defining and maintaining relationships to other art i-
facts created during system development [17] such as 
stakeholder needs, architectural or design elements, 
source code, to name but a few. Important goals of RT are 
to facilitate communication, to support integration of 
changes, to preserve design knowledge, to assure quality, 
and to prevent misunderstandings. RT is also crucial to 
establish and maintain consistency between heterogene-
ous models used throughout the system development life-
cycle [13]. 

Recording and retrieving trace information can assist 
engineers to deal with important issues in system devel-
opment or system maintenance [18]. For exa mple, it could 
help to learn more about the origins of a requirement 
(e.g., the stakeholder needs) or about the rationale for a 
design choice. Engineers might also be interested in find-
ing out how a functional or non-functional stakeholder 
need is realized in the system or if the implementation 

completely realizes the requirements. RT is especially 
important for analyzing the impact of new requirements 
or changes to existing ones.  

The benefits of requirements traceability are widely 
accepted nowadays and sophisticated tool support is 
available to record, manage, and retrieve trace informa-
tion [12]. However, several issues still hamper wide-scale 
adoption of RT in software engineering practice: 

 
• Acquiring traces is still mostly a manual process with 

only little automation available. This results in enor-
mous effort and complexity [16].  

• The full potential of RT can only be exploited if com-
plete trace information is available. Ho wever, missing 
information is a reality. 

• RT are in a constant state of flux since they may 
change whenever requirements or other development 
artifacts change (e.g., evolution). 

• It is often hard to anticipate the kind of engineering 
issues that might arise later. The available recorded 
trace information might therefore be insuffic ient. 

• Traces have to be identified and recorded between a 
high number and heterogeneous set of engineering art i-
facts (document, models, code, …). It very challenging 
to create meaningful relationships in such a complex 
context. 
 
We believe that automating RT should go beyond re-

cording and replaying trace information. In this paper we 
will present a technique that can ease trace acquisition by 
generating trace information automatically. It must be 
noted that this work is a continuation of our earlier work 
on identifying trace dependencies using scenarios [7]. The 
contribution of this paper is on showing (1) how require-
ments must be defined as input, (2) how RT results de-
rived by our approach have to be interpreted, (3)  how 
functional and non-functional requirements are treated, 
(4) how useful the derived RT results are in addressing 
requirements-related problems, and (5) how evolution-
ary/incremental requirements engineering is supported. 



 

The remainder of this paper is organized as follows: In 
Section 2 we briefly explain the Trace Analyzer tech-
nique. Section 3 will introduce the Video-On-Demand 
(VOD) case study. Section 4 will demonstrate that the 
generated traces are useful to support real-world engineer-
ing scenarios. In section 5 we will discuss related work. 
Conclusions and an outlook on further work will round 
out the paper. 

2 Automating RT using Trace Analyzer 

Trace dependencies describe origin, rationale, or reali-
zation of software development artifacts. For instance, if a 
requirement R led to the implementation of some source 
code C then there is a trace dependency between the two. 
If the requirement changes then the source code is af-
fected. Conversely, if the source code changes then the 
requirement is affected. Bi-directionality is very impor-
tant for trace analysis and implies that if R  depends on C 
then C depends on, at least, R. 

Based on this simple property, the Trace Analyzer [7] 
defines trace dependencies through (a) transitive reason-
ing and (b) shared use of a “common ground.” Transitiv-
ity is an intrinsic property of trace dependencies. It de-
fines A to depend on C if A depends on B and B depends 
on C. Shared use of a common ground is a more subtle 
but very powerful form of deriving trace dependencies. 
To use it, one has to identify a “common ground” with the 
following property: Given that A and B depend on subsets 
of that common ground then a trace dependency exists if 
and only if those subsets overlap. We found the source 
code of a software system to be a powerful candidate for a 
common ground. If requirement A depends on some 
source code CA and requirement B also depends on some 
source code CB then one can infer that A and B depend on 
one another if CA and CB overlap. The rationale for this 
can be inferred from bi-directionality. 

The Trace Analyzer technique takes known or hy-
pothesized dependencies between software development 
artifacts (e.g., requirements) and common ground (e.g., 
source code). It then builds a graph consisting of nodes 
that contain those common grounds and all their overlaps 
(e.g., separate nodes for CA 
and CB but if they overlap then 
this is captured explicitly in 
yet another node). This graph 
is then subjected to various 
manipulations to move known 
artifacts between the nodes. 
The goal is to constrain for all 
nodes in the graph what art i-
facts they relate to and what 
artifacts they do not relate to. 
Trace analysis is complicated 
by imprecise input where sin-

gle dependencies may include multiple artifacts (A or B  
depends on C) and trace analysis is complicated by open-
ended input where only partial knowledge is available (A  
depends on C and possibly others).  

Trace analysis is an iterative process using a large 
number of rules to manipulate the graph structure. In a 
final step, the graph is traversed once more to identify all 
nodes related to individual artifacts. Trace dependencies 
are then established if two different artifacts relate to at 
least one common node. The graph may even help in de-
termining the “strength” of a dependency based on the 
number of nodes any two artifacts have in common.  

The trace analyzer technique is fully automatable and 
tool supported. The only deficiency, as it may appear, is 
that some trace dependency input has to be provided 
manually. However, even this input can be generated 
(semi-)automatically if either an executable software sys-
tem exists (e.g., source code) or its model can be simu-
lated. We use test scenarios to define how to test individ-
ual artifacts or groups of artifacts. While testing a sce-
nario on a real system, it can then be observed what im-
plementation classes, methods, and lines of code are used. 
For instance, we employ the commercial tool Rational 
Pure Coverage® to observe test scenarios on an executing 
system. With the help of such a tool, trace dependencies 
between test scenarios and source code can be generated 
automatically. Given that we know what artifacts a test 
scenario relates to (the premise) one can automatically 
infer trace dependencies between artifacts and code using 
transitive reasoning. These trace dependencies are then 
used as input to the trace analyzer to provide full automa-
tion. 

3 VOD Case Study 

This paper will highlight the benefits of using the 
Trace Analyzer technique [7] for automating RT. The 
discussion in this paper will be supported by the case 
study of a video-on-demand (VOD) system, which was 
developed by a third party [5]. This software system is 
essentially a movie player that can search for movies, 
select and play them. The “on-demand” feature of the 
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Figure 1: Statechart Diagram 



 

player allows the playing of a movie concurrently while 
downloading its data from a remote site. This system pro-
vides an interesting challenge for Requirements Trace-
ability because its complex computational logic is well-
hidden underneath a simple VCR-like user interface (play, 
pause, stop button). Both functional and non-functional 
issues are fundamental in defining the requirements of the 
VOD system. 

3.1 VOD System and Model  

The VOD system consists of 21 Java application-
specific classes, and uses a large number of off-the-shelf 
library classes. The VOD system was also modeled using 
various UML diagrams (see statechart diagram in Figure 
1 as one example). Requirements were not defined but for 
the purpose of extending the VOD system (discussed 
later), the authors re-engineered those requirements 
manually. Table 1 depicts an excerpt of the captured re-
quirements. For instance, requirement r7 defines the need 
for an intuitive user interface modeled after a VCR player. 
Requirement r6 defines a maximum delay of one second 
to start playing a movie once it has been selected.  

Table 1. List of Requirements 

r0 Users should be able to display a list of available 
movies and select one from the list 

r1 Play movie immediately after selection from list 
r2 Users should be able to display textual information 

about a s elected movie 
r3 User should be able to pause a movie 
r4 3 seconds max to load movie list 
r5 3 seconds max to load textual information about a 

movie 
r6 1 second max to start playing a movie 
r7 Provide VCR-like user interface 
r8 User should be able to stop a movie 
r9 User should be able to start a movie 

 
Figure 1 shows a state diagram of the VOD system de-

scribing its behavior. It depicts that the VOD system op-
erates either in a movie selection mode (left) or in a 
movie playing mode (right). During movie selection, a 
user can select servers for downloading movie lists, in-
spect textual information about movies, and select indi-
vidual movies for playing. During playing mode, a se-
lected movie may be paused, stopped, and played again. 
The transitions between these states correspond to buttons 
a user may press in the VOD’s user interface. For in-
stance, a user may press the “Movies” Button at any time 
during movie play ing to select another movie.  

The drawback of the existing requirements and models 
(diagrams) is that no trace dependencies are defined be-
tween them. In some cases, those trace dependencies 
could be guessed relatively easy but the informal capture 
of the requirements and the semi -formal nature of the 

UML models make it hard to identify complete and cor-
rect trace dependencies manually. The following will 
show how our scenario-based trace analysis approach can 
automatically define trace dependencies among require-
ments, between requirements and code, and between re-
quirements and model elements (e.g., state transitions). 

3.2 Scenarios and Observations  

In order to identify trace dependencies fully automati-
cally our approach requires the existence of usage scenar-
ios that can be tested against the code. Table 2 lists all test 
scenarios defined for this case study. For example, test 
scenario 1 uses the VOD system to display a list of mo v-
ies. The details of how to test this scenario on the system 
are omitted here for brevity but the test scenario describes 
how to configure the VOD system and what user interface 
actions to perform (e.g., press buttons) in order to achieve 
the desired results. We then used the commercial tool 
Rational PureCoverage to monitor the VOD system while 
testing the scenario. In the course of testing scenario 1, we 
observed that only four Java classes got executed: Bor-
derPanel (C), ListFrame (J), ServerReq (R), and VODCli-
ent (U). In the following, we will only use single letter 
acronyms for Java classes. The letters C, J, R, and U are 
associated with the Java classes mentioned above.  

Table 2 also shows what artifacts (model element, re-
quirements) the test scenarios apply to. For instance, test 
scenario 1 was defined to relate to the state transition [s3] 
“Movies Button” in the statechart diagram (see Figure 1). 
This implies that test scenario 1 is a test case for the state 
transition [s3] and, while executing it on the real system, 
it was observed to use the Java classes (code) [C,J,R,U]. 
Due to transitivity of trace dependencies, one may con-
clude that the state transition [s03] depends on the code 
[C,J,R,U].  

Note that if non-observable components (COTS, libra r-
ies, …) are used then often their “wrappers” or “glue 
code” can be used as substitute if necessary. 

Table 2. Scenarios and Observed Footprints 

Test Scenario Artifact Observed Java Classes 
1. view movie list [s3] [C,J,R,U] 
2. view textual movie 

information 
[s4,s6][r2] [C,E,J,N,R] 

3. select/play movie [s8,s9][r6] [A,C,D,F,G,I,J,K,N,O,T,R,U] 
4. press stop button [s9,s12][r8] [A,C,D,F,G,I,K,O,T,U] 
5. press play button [s9,s11][r9] [A,C,D,F,G,I,K,N,O,T,R,U] 
6. change server [s5,s7] [C,R,J,S] 
7. playing [s9] [A,C,D,F,G,I,K,O] 
8. get textual movie 

information  
[r5] [N,R] 

9. movie list [r4] [R] 
10. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U] 
11. select movie [r0] [C,J,N,R,T,U] 
12. select/play movie [r1] [A,C,D,F,G,I,J,K,N,O,R,T,U] 
13. press pause  [s9,s10][r3] [A,C,D,F,G,I,K,O,U] 

 



 

Table 2 defines 12 additional scenarios. This includes 
one test scenario for each requirement (although multiple 
may exist) and, to make the trace analysis more interest-
ing, this also includes some ambiguous test cases for the 
statechart diagram. A trace dependency is ambiguous if it 
does not precisely define relationships between artifacts. 
For instance, test scenario 2 defines the state transitions 
[s4] and [s6] to relate to the code [C,E,J,N,R]. This state-
ment is ambiguous in that it is unclear which subset of 
[C,E,J,N,R] actually belongs to [s4] and which subset 
belongs to [s6].  

The approach relies on the capability of a software en-
gineer to relate the test scenarios to the requirements and 
to the model elements. Three errors are possible that may 
impact the trace analysis in different ways: (1) the engi-
neer omits a link between a test scenario and a require-
ment, (2) the engineer creates a wrong link, or (3) there is 
a mismatch between a requirement and the specified tests 
(for example, the test case only exercise the wrong or 
only a partial functionality). Although the technique has 
some means of detecting inconsistencies among links it 
can be fooled this way and engineers need to be aware of 
this.  

3.3 Trace Analysis 

Scenario-based trace analysis is simple for test scenar-
ios that are unamb iguous. For instance, the requirement 
[r6] defines a maximum delay of 1 second to start playing 
a movie. We know from test scenario 3 that [r6] was ob-
served to execute the Java classes [A,C,D,F,G,I,K,O]. 
Consequently, this Java code needs to be optimized to 
perform as desired.  

The trace analysis is complicated by the use of am-
biguous scenarios. For instance, through scenario 5 we 
know that pressing the play button causes [s11] directly 
and [s9] (playing the actually movie) indirectly. Alto-
gether [s9,s11] use 13 Java classes [A,C,D,F,G,I,K,N,O, 
R,T,U] but it is left unspecified which subsets of those 
classes are used by [s11] or [s9]. Alternatively, through 
scenario 7 we learn that [s9] alone uses the Java classes 
[A,C,D,F,G,I,K,O] which is a subset of [s9,s11]. It is thus 
possible to reason that classes [A,C,D,F,G,I,K,O] belong 
to [s9] whereas the remain ing classes [N,R,T,U] belong to 
[s11].  

For reasons of efficiency and precision, our trace ana-
lyzer approach uses a graph structure (called the footprint 
graph) to infer trace dependencies. Footprints are the ob-
served lines of code executed while testing scenarios. 
Figure 2 shows a partial footprint graph based on scenar-
ios 1, 4, 5, 7, and 13. Lower nodes (child nodes) are sub-
sets of higher nodes (parent nodes ). This subset relation-
ship applies to both the model elements and Java classes 
used. For instance, scenario 7 about playing a movie [s9] 
uses a subset of the lines of code that scenario 5 uses. 

Scenario 7 [s9] furthermore refers to a subset of the model 
elements referred to by Scenario 5 [s9,s11]. Within the 
footprint graph this places the node for Scenario 7 below 
the node for Scenario 5.  
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Figure 2. Partial Footprint Graph  

Besides containing a node for every scenario, the foot-
print graph also contains nodes for all possible overlaps 
between those scenarios. For instance, scenario 1 overlaps 
with scenario 5 in their common use of the Java classes 
[C,R,U]. A node, child to both, was thus introduced to 
capture that overlap explicitly. An irregularity is Sce-
nario 4 which uses a subset of the Java classes that Sce-
nario 5 uses but in the graph figure it is not a child node to 
Scenario 5 because Scenario 4 [s9,s12] does not refer to a 
subset of the model elements that Scenario 5 refers to 
[s9,s11]. It is thus presumed that both scenarios use simi-
lar lines of code but are different in nature. Thus an ex-
plicit node is added to the graph to avoid having to add 
the one as a child of the other. 

Once all scenarios are inserted into the footprint graph, 
the graph contains nodes for every possible overlap be-
tween any two scenarios. The graph is then manipulated 
to move artifacts around those nodes to identify for every 
node the artifacts it could possibly relate to. For instance, 
parent node [s9,s11] has two children. Each child relates 
to a subset of the Java classes of the parent but both chil-
dren together relate to the same Java classes the parent 
does. For consistency and completeness, both children of 
parent node [s 9,s11] together must thus relate to [s9] and 
[s11] but each child individually may relate to a subset of 
[s9,s11]. In case of the left child, we know that it must 
relate to [s9] given that both parents of that child have 
[s9] in common. In case of the right child, we do not yet 
know what artifacts apply and we thus presume a subset 
of the parent artifacts. This uncertainty is captured in form 
of an amb iguity in that either [s3], [s9], [s11] or all of 
them relate to the right child node (indicated as 
[s3||s9||s11]. Similarly, the left child may also relate to 



 

[s11] and/or [s12] since we are uncertain about those ele-
ments as well.  

The trace analyzer technique uses a larger set of rules 
than can be described in this paper. There are many spe-
cial cases one has to consider to make the trace analysis 
reliable (see [7] for a detailed discussion). All rules have 
in common that they move model elements within the 
graph structure with the goal of identifying for every node 
what model elements they relate to. Since the leaf nodes 
(nodes without children) refer to individual Java classes 
(in this case study only since leaf nodes may also refer to 
Java methods or individual lines of code), it is then possi-
ble to infer what model elements a Java class relates to. 
Table 3 below summarizes some dependencies between 
artifacts and code that can be interpreted from the graph.  

Table 3. Artifact to Java class dependencies 

A B C D E F G H I J K L M N O P Q R S T U
r0 F F F F F F
r1 F F F F F F F F F F F F F
r2 F F F F F
r3 F F F F F F F F F
r4 F
r5 F F
r6 F F F F F F F F F F F F F
r7 F F F F F F F F F F F F
r8 F F F F F F F F F F
r9 F F F F F F F F F F F F
s3 P P P P
s9 F P F F F F F F

s10 P P
s11 P P P P P
s12 P P P

 

For instance, we can interpret from the footprint graph 
that either model element [s11] or [s12] or both of them 
have a dependency to the Java class ‘T.’ Table 3 thus 
shows this dependency in form of a letter where the col-
umn ‘T’ and the rows ‘s11’ and ‘s12’ intersect. The letter 
indicates the confidence of the trace analyzer in this find-
ing: ‘F’ for full confidence; ‘P’ for partial confidence. The 
trace analyzer determined that class ‘T’ either depends on 
s11 or s12. Consequently one may only have a partial 
confidence that s11 depends on class ‘T.’ In fact, one may 
only then conclude that s11 depends on class ‘T’ if it be-
comes known that s12 does not depend on class ‘T.’ 

In some cases, the trace analyzer technique can reduce 
ambiguous inputs. For instance, scenario 3 in Table 2 
defined [s8] to potentially depend on class ‘F’ however 
the trace analyzer concluded that class ‘F’ belongs to [s9] 
instead. Although the trace analyzer technique can reduce 
ambiguity, it cannot necessarily eliminate it in all cases. 
Ambiguous dependencies are the result of ambiguous 
and/or incomplete input. The more precise the input the 
less ambiguous the dependencies. The trace analyzer can 
also identify some forms of inconsistent input but its dis-
cussion is out of the scope of this paper. 

3.4 Interpreting the graph 

Table 3 only captures trace dependencies between re-
quirements and code, and between model elements and 
code. Given the transitive property of trace dependencies, 
one can also use Table 3 and the footprint graph in Figure 
2 to infer dependencies between different requirements 
and/or model elements. For instance, it was determined 
that r9 traces to [A,C,D,F,G,I,K,N,O,R,T,U] and that [r6] 
traces to [A,C,D,F,G,I,J,K,N,O,R,T,U]. Given that [r9] 
traces to a subset of the classes that [r6] traces to implies a 
dependency between [r9] an [r6]. In other words, the re-
quirement for a ‘play button’ also implies the non-
functional constraint of only having 1 second to start 
playing the movie once the button is pressed.  

Whereas some dependencies are intuitive and could be 
determined manually with relative little effort, the follo w-
ing dependency is not only hard to guess but also prob-
lematic: One can observe through Table 3 that [r6] de-
pends on [r5] given that [r5] traces to the Java classes 
[N,R] (a subset of [A,C,D,F,G,I,J,K,N,O,R,T,U]). This 
dependency implies that in order to start playing a movie 
one needs to load the textual information about a movie. 
The problem is that loading this information is allowed to 
take up to three seconds which is longer that the allowed 
1 seconds max to start playing that movie. The finding of 
this trace dependency implies a conflict between two re-
quirements. 

Besides finding trace dependencies between different 
requirements, the trace analyzer technique also finds de-
pendencies between requirements and model elements. 
For instance, the requirement [r0] “display and select 
movie from list” depends on the state transition [s3] be-
cause [s3] may at most relate to [C,J,R,U] whereas [r0] is 
known to relate to [C,J,N,R,U] (a superset). Using the 
same method, one may identify many more trace depend-
encies. 

3.5 Determine impact of new or changed  
requirements  

The trace analyzer technique can also help in analyzing 
the impact of new or changed requirements, which are 
common in an iterative software process [4]. Normally, it 
is desirable to validate a new requirement or a change in 
an existing requirement prior to implementation. In such a 
case where no common ground (e.g., source code) exists 
one can still use the trace analyzer by hypothesizing about 
the impact of a new requirement or a requirement change. 
The following discusses one such case in context of add-
ing a new requirements to the VOD system that has not 
yet been implemented.  

 



 

Table 4. New/Changed Requirements 

r6 3 second max to start playing a movie 
r10 Avoid image degradation caused by temporary 

network-load fluctuations  
 

Table 4 shows the requirement [r6] changed due to the 
conflict with [r9] and it also shows a new requirement that 
deals with image degradation because of network fluctua-
tions. Recall that the VOD system is a video-on-demand 
system that starts playing a movie as soon as data arrives 
via the network. If a temporary network congestion 
causes delays it may negatively affect image quality. A 
possible approach to achieve requirement [r10] would be 
to do some initial caching to overcome this limitation. To 
find out whether this new requirement clashes with some 
existing requirements, we can do a preliminary trace 
analysis. To do this, we hypothesize about the impact of 
the new requirement. Thus, we presume that caching can 
be done solely by modifying the Java classes 
[A,D,G,I,K,O] plus adding some new ones. We thus de-
fine a new, hypothetical trace dependency between [r10] 
and [A,D,G,I,K,O,+] and repeat the trace analysis with 
this additional data.  

A B C D E F G H I J K L M N O P Q R S T U
r10 F F F F F F  
 
If the new hypothesized trace dependency is compared 

with the other known trace dependencies in Table 3 then 
we can again determine trace dependencies between [r10] 
and other artifacts based on their overlapping use of 
common code. For instance, one can tell that the new re-
quirement [r10] uses a subset of the code that the state 
[s9] uses. Consequently, [s9] fully depends on [r10] 
(100% strength). Even more interesting is that the 
changed requirement [r6] also fully depends on [r10]. 

Recall that [r6] was changed because 1-second re-
sponse time was insufficient given that at least 3 seconds 
are needed to load textual information about a movie. We 
thus relaxed the 1-second constraint to three seconds. 
However, now we learn that if requirement [r10] should 
get implemented then this will cause additional delays. A 
partial caching of a movie can only happen once movie 
details are known. A caching period of 1-2 seconds thus 
adds to the already three seconds needed to load and play 
a movie. This is a conflict that can be identified with ease 
once one is aware of the trace dependency. This example 
again shows that our trace analyzer approach can help in 
pinpointing non-obvious dependencies between artifacts. 
If those dependencies lead to the identification of con-
flicts then the trace analyzer can further help in evaluating 
potential solutions. 

4 Benefits of the Approach for Require-
ments Traceability 

Requirements Traceability is an important means to fa-
cilitate communication among the success-critical stake-
holders, to ease determining the impact of changes and 
support their integration, to preserve knowledge and de-
pendencies created during the design process, to assure 
quality, and to prevent misunderstandings. This section 
will discuss how our automated approach towards deriv-
ing trace dependencies can assist engineers in dealing 
with real-world scenarios. 

Understanding requirements’ origins and rationale. 
Traceability between stakeholder needs and requirements 
can be detected manually but our automated technique 
provides a more complete traceability. Trace analysis can 
derive missing relationships between informal user needs 
and existing design elements. For example, the automated 
technique can help to create traceability links from new 
stakeholder needs to existing design: In one of our ex-
periments a link from the new user need “Users should be 
able to capture movie screen snapshot at any time” to the 
“Pause button” GUI element was automatically derived. 
This gives rationale and explains why an element is here 
by providing backward traceability.  

Traceability to non-functional requirements. Using the 
approach even non-functional requirements can be linked 
to model elements or code sections. Non-functional 
stakeholder needs ultimately always result in some code 
although this relationship is typically almost impossible to 
identify. For example, we know that implementation class 
[U] exists because of [r7] and [r8]. The requirements 
“Three seconds ma x to load textual information about a 
movie” can be linked to implementation classes [N,R]. By 
generating missing trace information the trace analyzer 
technique can link a new non-functional user need “Nov-
ices should be able to use the most important functions 
without training” to requirements r1, r3, r8, r9 and thereby 
also show all affected implementation classes. 

Aid identification of conflicting requirements. It is 
typically hard to derive all dependent requirements be-
cause of scalability issues. An automated approach to-
wards generating dependencies between requirements is 
thus critical to determine whether dependent requirements 
are consistent. For example, the requirement “novices 
should be able to use system without training” may be in 
conflict with the requirement “3 seconds response time” 
because such a long delay would not be intuitive. Our 
approach cannot automatically derive conflicts, but by 
finding all possible dependencies it is easier to identify 
potential inconsistencies and conflicts. Another example 
is discussed in Section 3.4. 



 

Verification of requirements. An important task of a 
software engineer is to determine whether the require-
ments have been realized properly. We specify acceptance 
test through scenarios for all requirements. We can 
thereby make sure that scenarios sufficiently cover re-
quirements. The case study shows that we tested all re-
quirements and know what sections of the code realize 
them. 

Identification of missing requirements. The approach 
can also be used to identify missing requirements. For 
example, the analysis reveals that we have no require-
ments defining scenarios for ‘S’ or ‘P’. Does this mean 
that the system implements something not stated in the 
requirements? Through the generated trace dependencies 
we know that implementation class ‘S’ is about [s5] and 
[s7] (selecting server) and we can now reason that no re-
quirement was defined that allows the user to change 
servers. Besides detecting missing requirements, we can 
also reason about missing or incomplete designs. For in-
stance, we find that design element [s1] was not defined 
in any requirement or any implementation. 

Determination of change impact. Assume that the re-
sponse time in requirements “3 second max to start play-
ing a movie” has to be reduced. Trace analysis reveals the 
impact of such a change onto other requirements, onto 
design, and onto code. But trace analysis also reveals the 
reverse impacts. For example, we know without any man-
ual creation of trace information that if  code element [T] 
(Video.java) changes than the design elements [s11,s12] 
are affected by that change. 

Determination of impact of new requirements. New re-
quirements are an interesting case for deriving trace de-
pendencies where parts of the system have not even been 
built. Section 3.5 discussed that by hypothesizing what 
model elements/code might be affected by a new re-
quirements the trace analyzer can predict which require-
ments and other development artifacts might be affected. 

Understanding level of strength of dependencies. It 
must be noted that our technique can determine strength 
of dependencies where strength is defined in terms of how 
many classes (or methods or lines of code) two artifacts 
have in common. For instance, it can be observed that that 
[r3] uses 33% of the classes of [r0] and [r0] uses 22% of 
the classes of [r3] (the percentage applies to the number 
of overlapping classes versus total classes). Although the 
dependency between r3 and r0 is not very strong it still 
implies that a change in [r3] has a 33% chance that it will 
also affect [r0]. This percentage of course presumes that 
all classes are of equal size which they are not. For more 
precise dependency numbers, the trace analysis could be 
conducted on methods or lines of code. Note that the 
strength of a dependency is not to be confused with the 
confidence in a dependency. Whereas the confidence 

(full/partial) defines the likelihood of false positives, 
strength simply describes the degree of overlaps. 

Upon inspection of the generated traces between re-
quirements, we find that most requirements trace to most 
other requirements at least partially. This is not very sur-
prising since requirements tend to be very generic de-
scriptions. For a more useful determination of trace de-
pendencies between requirements one should focus more 
on the extremes – that is 0% and 100%. If there is 0% 
overlap between two requirements then there is no de-
pendency between them. The requirement [r3] (pause 
movie) has nothing in common with requirement [r4] 
(Three secs max to load movie list). If there is a 100% 
overlap between two requirements then there is a strong 
dependency between them. For instance, [r6] uses 100% 
of [r5] which implies a strong dependency. 

Domain specific code vs generic code. The approach 
can also be used to distinguish project or domain-specific 
code from generic code. For specific analyses it might be 
necessary to ignore generic code since it is likely to be 
used for different purposes and may obscure analysis. For 
instance, two classes may use a common third class to 
create and modify a file but this does not mean those two 
classes are related to one another (note: those two classes 
may be related if they modify the same file but the trace 
analyzer approach cannot detect that). 

Determining artifacts needing attention. Special care 
has to be spent on very complex and/or very important 
artifacts. The importance of a development artifact de-
pends on how many other artifacts it constrains (e.g., de-
sign element s9 is important in that it (partially) defines 8 
implementation classes). The complexity of an artifact 
depends on how many other artifacts constrain it  (e.g., 
design element s9 is also complex since 6 out of the 10 
requirements impose themselves on it). Trace analysis can 
simply pinpoint these kinds of metrics, e.g., for comple x-
ity versus importance trace offs. 

Balancing granularity of requirements. In an early pro-
ject stage requirements will be typically fairly generic; 
later on requirements will be more specific – unless, of 
course, a major change comes along. For instance, [r5] is 
a lower-level requirement than [r6] because [r5] uses a 
subset of the code than [r6] does. Trace analyzer can find 
requirements that are very generic (e.g., they affect many 
classes). This can assist the engineer to balance out re-
quirements by increasing precision. 

5 Related Work  

Different approaches have been developed to automate 
the acquisition of trace information. Typically these ap-
proaches support the creation or recovery of traces be-
tween two types of engineering artifacts (e.g., de-



 

sign/code, code/documentation, require-
ments/architectures).  

For example, Antoniol et al. discuss a technique for 
automatically recovering traceability links between ob-
ject-oriented design models and code based on determin-
ing the similarity of paired elements from design and 
code [2]. Murphy et al [13] suggest software reflexion 
model showing where the engineer's high-level model 
agrees with and where it differs from a model of the 
source. Antoniol et al describe an approach to automati-
cally recovering trace information between code and 
documentation [1]. 

Other approaches discuss specific traceability issues 
without focusing on automation: Arlow et al emphasize 
the need to establish and maintain traceability between 
requirements and UML design and present Literate Mod-
eling as an approach to ease this task [3]. Gotel and 
Finke lstein extend the view of artifact based RT and focus 
on understanding the social network of people that con-
tributed in the development of requirements [9]. Pohl et al 
describe an approach based on scenarios and meta-models 
to bridge requirements and architectures [15]. Grünbacher 
et al. discuss the CBSP approach that improves traceabil-
ity between informal requirements and architectural mo d-
els by developing an intermediate model based on archi-
tectural dimensions [11].  

Gruber et al. discuss the problems of design rationale 
capture and demand the need for automatically inferring 
rationale information [10]. 

6 Conclusions and Further Work 

In this paper we presented an approach supporting the 
automated generation of trace information. We discuss the 
approach in the context of a video-on-demand system and 
show that it allows deriving trace dependencies between 
the different models and artifacts of the system automati-
cally. We then discussed how the derived traces can sup-
port engineers. A major strength of the approach is that it 
creates many non-obvious dependencies allowing more 
thorough reasoning and pinpointing of non-standard situa-
tions. 

A key contribution of our approach is that it reduces 
the enormous effort and complexity of acquiring traces by 
automatically deriving trace information from a small set 
of obvious hypothesized traces. This leads to more com-
plete traces and the full potential of RT can be exploited: 
For example, traces to pre-requirements explaining where 
requirements come from or traces from/to non-functional 
requirements are typically difficult to create and maintain 
using manual traditional approaches. The automated ap-
proach also creates traces engineers typically could not 
anticipate. This improves the applicability of our ap-
proach in different contexts or non-standard engineering 
problems. 

Further work will concentrate on developing auto-
mated support assisting engineers in exploring and using 
the automatically derived trace dependencies. For exa m-
ple, by highlighting artifacts and situations that require 
special attention [5].  Another thread of our research will 
focus on experimenting with different levels of granular-
ity of coverage measurement: The technique allows to 
specify this level arbitrarily (e.g., class, method, or state-
ment). We aim at developing heuristics allowing software 
engineers to determine the optimum level of granularity in 
a given situation. We are also intending to apply our tech-
nique and findings to a large-scale system. 
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